آینده سامانه‌های بازیابی اطلاعات متنی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری علم اطلاعات و دانش‌شناسی، دانشگاه اصفهان

2 دانشیار گروه علم اطلاعات و دانش‌شناسی، دانشگاه اصفهان

3 استاد گروه علم اطلاعات و دانش‌شناسی، دانشگاه اصفهان

4 دکتری علم اطلاعات و دانش‌شناسی؛ دانشکده بیزینس اینفورماتیک؛ دانشگاه کروینوس بوداپست، دانشیار دانشگاه اصفهان؛

5 استادیار گروه آینده‌پژوهی، دانشگاه اصفهان

چکیده

هدف: شناسایی عوامل مؤثر بر آیندة سامانه‌های بازیابی اطلاعات متنی هدف این پژوهش است.
روش‌شناسی: داده‌ها از متون و پیمایش نظرات متخصصان بازیابی اطلاعات به روش نمونه‌گیری هدفمند گردآوری شده است.
یافته‌­ها: بُعد فناوری بیشترین تأثیر را بر آیندة سامانه‌­های بازیابی اطلاعات خواهد داشت. بُعد هوش مصنوعی با‌ ضریب 93 مؤثرترین شناخته شد. حق مؤلف در بُعد سیاسی با‌ ضریب86 و وابسته شدن مشاغل به اطلاعات در بُعد اجتماعی-فرهنگی با‌ ضریب 87 و برنامه­‌های همراه با‌ ضریب 86 در شاخص اقتصادی مهمترین عوامل موثر بر آینده سامانه‌های متنی خواهد بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Future of Textual Information Retrieval Systems

نویسندگان [English]

  • A. Asadnia 1
  • M, CheshmehSohrabi 2
  • A. shabani 3
  • A. Asemi 4
  • M. Taheri Demneh 5
1 PhD Candidate, Knowledge and Information Science, University of Isfahan, Isfahan, Iran
2 Associate Professor, University of Isfahan, Faculty of Education and Psychology, Department of Knowledge and Information Science, Isfahan, Iran
3 Professor, Knowledge and Information Science, University of Isfahan, Isfahan, Iran,
4 PhD in Knowledge and Information Science, Doctoral School of Business Informatics, Corvinus University of Budapest, Hungary, Associate Professor, University of Isfahan, Isfahan
5 Assistant Professor, Department of Futures Studies, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
چکیده [English]

Purpose: To identify factors influencing the future of text information retrieval systems with a forward-looking approach.
Methodology: Document analysis and survey are used to identify factors. The research population in the document analysis section consists of literature related to the textual information retrieval field and in the survey section consists of the specialists in information retrieval. Purposive sampling is applied in both sections.
Findings: The results reveal that among the examined indicators, technology index is the most important index in the future of information retrieval systems. in technology index, artificial intelligence with an importance factor of 93 in the political index, copyright with 86 importance factor; in the socio-cultural index, business reliance on the information with 87 importance factor; and in the economic index, programs associated with 86 importance factor are among the highest.
Conclusion: Information science professionals should concentrate more on all key identified factors if they want to have a more effective contributive role in the future of textual information retrieval systems, because knowing the past, understanding the present, and focusing on these existing factors can make the future more effectively

کلیدواژه‌ها [English]

  • Textual information retrieval systems,
  • Information retrieval systems,
  • Information retrieval
  • future studies
آزاد ارمکی، تقی؛ مبارکی، مهدی؛ شهبازی، زهره (1391). بررسی و شناسایی شاخص­های کاربردی توسعه اجتماعی (با استفاده از تکنیک دلفی). مطالعات توسعه اجتماعی-فرهنگی، 1 (1): 7-30. 
Elsevier (2019). How-scopus-works. https://www.elsevier.com/solutions/scopus/how-scopus-works (accessed 15 Oct. 2019).
Guo, J., Fan, Y., Pang, L., Yang, L., Ai, Q., Zamani, H., ... and Cheng, X. (2019). A deep look into neural ranking models for information retrieval. arXiv preprint.1903.06902.
Holl, K., & Elberzhager, F. (2016). Mobile Application Quality Assurance: Reading Scenarios as Inspection and Testing Support. 2016 42th Euromicro Conference on Software Engineering and Advanced Applications (SEAA). doi:10.1109/seaa.2016.11
Jameson, A. )1987(. Downloading and Upload in Online Information Retrieval. Library Management, 8 (1), 2-64. https://doi.org/10.1108/eb054895
Jones, S.K. (1999). Information retrieval and artificial intelligence. Artificial Intelligence, 114, 257–281.
Kolomiyets, O., & Moens, M.F. (2011). A survey on question answering technology from an information retrieval perspective. Information Sciences, 181 (24), 5412-5434. doi: 10.1016/j.ins.2011.07.047
Kraaij, W., Pohlmann, R., and Hiemstra, D. (2000). Twenty-one at TREC-8: using language technology for information retrieval. NIST SPECIAL PUBLICATION SP, 246: 285-300.
Lawlor, R.C. (1967). Information retrieval and copyright law revision. Information (International Social Science Council), 6(1), 75-85. https://doi.org/10.1177/053901846700600103
Lewandowski, D. (2005). Web searching, search engines and Information Retrieval. Information Services & Use, 25 (3-4), 137-147.DOI 10.3233/ISU-2005-253-402
Lingpeng, Y., Donghong, J., & Li, T. (2004). Chinese information retrieval based on terms and ontology. The Fourth NTCIR Workshop, 412-414.
Liu, J., Kong, X., Zhou, X., Wang, L., Zhang, D., Lee, I., & Xia, F. (2019). Data Mining and Information  Retrieval in the 21st century: A bibliographic review. Computer Science Review, 34. 100193. DOI: 10.1016/j.cosrev.2019.100193
Mandle, T. (2008). Artificial Intelligence for Information Retrieval. In Encyclopedia of artificial intelligence. London: Information Science Reference. doi: 10.4018/9781599048499.ch023
Prakash, S., Shashidhara, H.R., & Raju, G.T. (2013). The Role of an Information Retrieval in the Current Era of Vast Computer Science Stream. International Journal of Soft Computing and Engineering, 3 (3), 139-143.
Rialland, A., & Wold, K.E. (2009). Future Studies, Foresight and Scenarios as basis for better strategic decisions. Trondheim, December.
Singhal, A. (2008). Web Search: Challenges and Directions. In European Conference on Information Retrieval (pp. 2-2). Springer, Berlin, Heidelberg.
Smith, L.C. (1976). Artificial intelligence in information retrieval systems. Information Processing & Management, 12 (3), 189-222. https://doi.org/10.1016/0306-4573(76)90005-4
Sriram, G.G., Pravallika, T., Neelima, K., and Rahmathulla, Sh. (2014). The Information Retrieval, a Future Barrier. International Journal of Innovative Research in Computer and Communication Engineering, 2 (2), 2943-2947.
Wan, G.G., and Liu, Z. (2008). Content-based information retrieval and digital libraries. Information technology and libraries, 27 (1), 41-47. https://doi.org/10.6017/ital.v27i1.3262